الوسطين الحسابيين بين العددين 10 70 يساوي

الوسيلتان الحسابيتان بين العددين 10 يساوي 70؟ ، حيث يكون المتوسط ​​الحسابي والمتوسط ​​الحسابي مقاييس للاتجاه المركزي ، وتستخدم هذه المقاييس عمومًا لدراسة القيم الرياضية المختلفة ، وفي هذه المقالة سنتحدث بالتفصيل عن مقاييس النزعة المركزية والمتوسط ​​الحسابي والوسيط ، وسنشرح إجابة السؤال الأساسي بطريقة مفصلة.

ما هي مقاييس الاتجاه المركزي؟

مقاييس الاتجاه المركزي ، وهي القيم التي تحاول وصف مجموعة من البيانات عن طريق تحديد الموقع المركزي ضمن مجموعة البيانات نفسها. تعود فكرة هذه الإجراءات إلى الباحث الإنجليزي فرانسيس جالتون. يمكن تلخيص هذه التدابير على النحو التالي:[1]

SMA

المتوسط ​​الحسابي ، هو القيمة التي تصف متوسط ​​أو متوسط ​​القيم في مجموعة واحدة ، ويمكن حساب المتوسط ​​الحسابي عن طريق جمع قيم المجموعة بأكملها ثم قسمة المجموع على عدد هذه القيم ، حيث يعتمد المتوسط ​​الحسابي على جميع القيم والملاحظات في المجموعة ، حيث يتميز بأنه أقل مقياس للميل المركزي المتأثر بالتقلبات العينية.

وسيط حسابي

الوسيط الحسابي (بالإنجليزية: Median) ، هو ترتيب البيانات والقيم في المجموعة من الأصغر إلى الأكبر أو العكس ، ثم اختيار الرقم الموجود في المنتصف ، وفي حالة وجود رقمين ، يتم وضع الوسيط للرقمين ، ويستخدم هذا المقياس في التوزيعات الرياضية الملتوية ، ويفضل استخدامه في حالة الفئات والقيم المفتوحة ، لأنه لا يتأثر بالقيم المتطرفة.

الوضع

الوضع ، هو القيمة الأكثر شيوعًا في مجموعة معينة من البيانات أو القيم ، ويتأثر هذا المقياس بطول القيم وعددها. الفئات وجداول التردد.

انظر أيضًا: ما هو وضع ومقاييس الاتجاه المركزي؟

المتوسطان الحسابيان بين العددين 10 70 يساوي

الوسيلتان الحسابيتان بين العددين 10 70 يساوي 40 و 20 ، اعتمادًا على قوانين مقاييس الاتجاه المركزي ، حيث يمكن حساب المتوسط ​​الحسابي عن طريق جمع جميع قيم المجموعة ثم قسمة الناتج على عدد هذه القيم ، بينما يُعرف الوسيط الحسابي بترتيب القيم من الأصغر إلى الأكبر واختيار متوسط ​​القيمة ، ويمكن حساب الوضع من خلال معرفة القيمة الأكثر شيوعًا في المجموعة ، وفيما يلي بعض الأمثلة العملية حول كيفية حساب مقاييس الاتجاه المركزي في خطوات مفصلة:

  • المثال الأول: إذا كانت القيم في المجموعة [ 6 , 9 , 5 , 3 , 6 , 2 , 4 ] أوجد المتوسط ​​الحسابي والوسيط ووضع القيم في المجموعة طريقة الحل: الوسط الحسابي = مجموع القيم ÷ عدد القيم المتوسط ​​الحسابي = (6 + 9 + 5 + 3 + 6 + 2 + 4) ÷ 7 الوسط الحسابي = 5 الوسيط الحسابي = متوسط ​​القيمة بين المتوسط ​​الحسابي يمكن حسابه عن طريق ترتيب الأرقام بترتيب تصاعدي أو تنازلي 2 ، 3 ، 4 ، 5 ، 6 ، 9 ، الوسيط = 5 الوضع = الأكثر القيمة المتكررة القيمة الأكثر تكرارًا = 6 الوضع = 6
  • المثال الثاني: إذا كانت القيم في المجموعة [ 20 , 15 , 12 , 15 , 18 , 11 ] أوجد المتوسط ​​الحسابي والوسيط ووضع القيم في المجموعة طريقة الحل: الوسط الحسابي = مجموع القيم ÷ عدد القيم المتوسط ​​الحسابي = (20 + 15 + 12 + 15 + 18 + 11) ÷ 6 المتوسط ​​الحسابي = 15 الوسيط الحسابي = متوسط ​​القيمة بين قيم المجموعة يمكن حساب الوسيط الحسابي بترتيب الأرقام تصاعديًا أو تنازليًا: 11 ، 12 ، 15 ، 15 ، 18 ، 20. الوسيط الحسابي = المجموع من القيم المتوسطة ÷ 2 الوسيط الحسابي = (15 + 15) ÷ 2 الوسيط الحسابي = 15 الوضع = القيمة الأكثر شيوعًا القيمة الأكثر تكرارًا = 15 الوضع = 15
  • المثال الثالث: إذا كانت القيم في المجموعة [ 3 , 9 , 9 , 7 , 2 , 5 ] ابحث عن المتوسط ​​الحسابي والوسيط ووضع القيم في طريقة الحل المجموعة: الوسط الحسابي = مجموع القيم ÷ عدد القيم المتوسط ​​الحسابي = (3 + 9 + 9 + 7 + 2 + 5) ÷ 6 المتوسط ​​الحسابي = 5.8 المتوسط ​​الحسابي ≈ 6 المتوسط ​​الحسابي = القيمة المتوسط ​​بين قيم المجموعة. يمكن حساب الوسيط الحسابي عن طريق ترتيب الأرقام بترتيب تصاعدي أو تنازلي 2 ، 3 ، 5 ، 7 ، 9 ، 9. الوسيط الحسابي = مجموع القيم المتوسطة ÷ 2 الوسيط الحسابي = (5 + 7) ÷ 2 الوسيط الحسابي = 6 وضع = القيمة الأكثر تكرارًا القيمة الأكثر تكرارًا = لا يوجد وضع = لا يوجد وضع

انظر أيضًا: ما هو الوضع في الرياضيات؟

في ختام هذا المقال سنكون قد علمنا أن الوسيلة الحسابية بين العددين 10 70 تساوي 40 و 20 ، وقد أوضحنا بالتفصيل ما هي مقاييس الاتجاه المركزي ، وقد ذكرنا نبذة مختصرة عن المتوسط ​​الحسابي ، الوضع والوسيط الحسابي ، بالإضافة إلى ذكر بعض الأمثلة لكيفية حساب هذه القياسات.

‫0 تعليق

اترك تعليقاً